

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

nano Yo PTE LTD Director Mr. Masayuki Takamatsu

May 24, 2007

Report on particle size of samples

The particle-size distributions of the samples 1 & 2 which had been provided by nanoYo PTE Ltd. were analyzed using a dynamic light scattering spectrophotometer (Otsuka Electronics, Osaka, Japan). Prior to the analysis, the viscosity and refractive index of the solvent were determined at 25°C to be 1.222 cP and 1.3367, respectively.

Figure 1 shows the particle-size distribution of sample 1. Closed diamond and solid curve represent the frequent and cumulative distributions, which were calculated on a weight basis. There were a major peak and two minor peaks in the frequent distribution. The mean diameter of the particles at the major peak was 3.3 ± 0.3 nm, as shown in Table 1. Because the sample contains the particles, the mean diameter of which was 157.9 nm, although the content was very low, it looked slightly milky.

Figure 2 shows the particle-size distribution of sample 2. The keys are the same as in Fig. 1. The mean particle diameter was 2.4 nm \pm 0.4 nm (SD). After the sample was stood for 1.5 h at 25°C, the analysis was made again. The frequent and cumulative distributions are also shown in Fig. 2 by open diamonds and dotted curve, respectively. The particle grew to form flocs during the storage (mean diameter \pm SD : 17.0 \pm 3.7 nm). Because flocs are aggregates by very weak attractive force, they could be re-dispersed to smaller particles.

Shuji Adachi, PhD

Shiji Adaclj

Professor of Division of Food Science and Biotechnology,

Kyoto University,

Kyoto, Japan